

Racquel Wells - PGY3 6 6

Goals + Objectives

- O understand the diagnosis, management and treatment of acute kidney injury
- o understand etiology and staging of CKD
- O Indications for dialysis
- O Common complications of End Stage Renal Disease patients

Define AKI

- O Acute/Abrupt worsening of renal function (<48 hours)
- $0 \uparrow cr > 0.3 mg/dl$
- 0 ↑ Cr > 50% from baseline
- O UOP < 0.5mL/kg/hr for > 6 hours

AKI - the Work up!

- O History. History. History.
 - > What is the baseline creatinine?
- O Physical Exam
 - > Fluid Down?
- O Review Medications
 - > NSAIDS, ACEI, diuretics

AKI - the Work up!

- O LABS/IMAGING
 - ORFP
 - OUA
 - O ELECTROLYTES!
 - O FENA, FEUREA

- O Bladder Scan/PVR
- O Renal US
- O Biopsy
- O The Others...
 - O SPEP/UPEP
 - O ANCAS, Complements

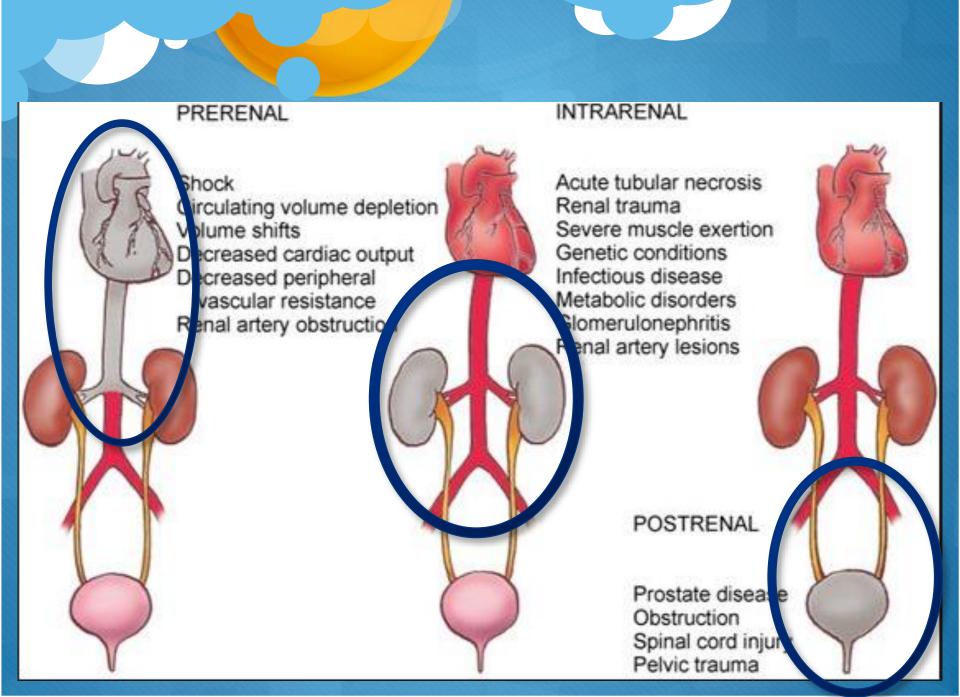
The UA

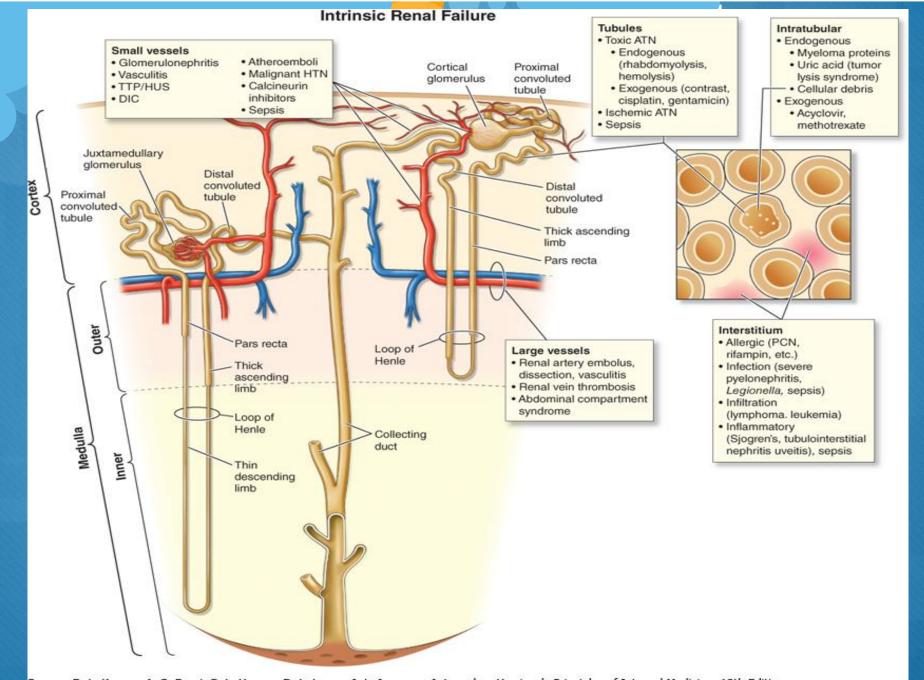
Urine Dipstick		
Measurement	Significance and uses	
Specific gravity	Estimate U_{osm} : each 0.001 above $1 \approx 30$ osm (SG $1.010 \rightarrow U_{osm} \approx 300$) SG and U_{osm} useful in evaluating AKI, dysnatremias, polyuria heavy substances (glucose, contrast) \uparrow SG more than U_{osm}	
рH	Range: 4.5-8.5; useful in evaluation of stones, RTAs, infection	
Protein	Detects albumin (marker for glomerular dysfxn); see "Proteinuria"	
Blood	See "Hematuria"; also ⊕ with myoglobinuria (rhabdomyolysis) False ⊕: semen, dilute urine (→ osmotic cell lysis), ↑ pH, vaginal blood	
WBC	Suggests inflammation (UTI, interstitial nephritis, GN)	
Ketones	Detects acetoacetate (ie, ketoacidosis), but not β-hydroxybutyrate	
Nitrite	Suggests presence of nitrate reductase ⊕ bacteria (most enteric GNRs)	
Bilirubin	↑ in biliary or hepatic disease	
Glucose	in hyperglycemia (>180 mg/dL), pregnancy, Fanconi's syndrome	

UA - Microscopy

Assessing patient with acute renal failure – Urinary Casts

Red cell casts	Glomerulonephritis Vasculitis	
White Cell casts	Acute Interstitial nephritis	
Fatty casts	Nephrotic syndrome, Minimal change disease	
Muddy Brown casts	Acute tubular necrosis	

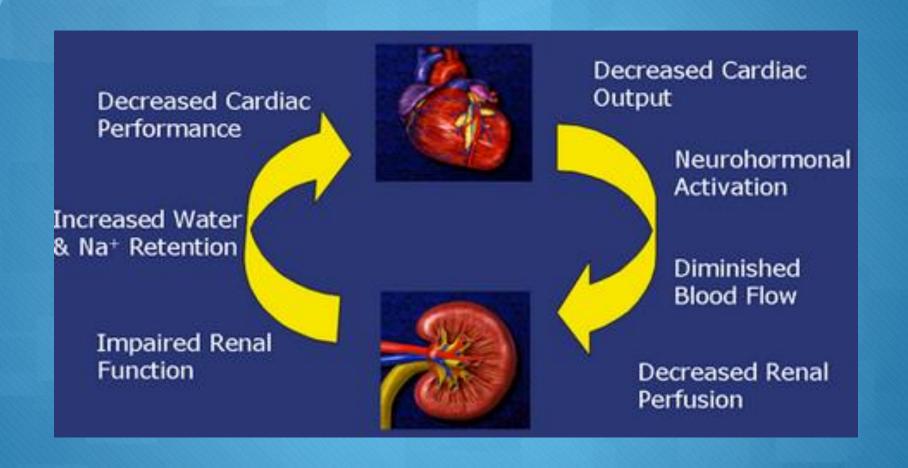

FeNa, Feurea!


FeNa

- O (Urine Sodium x Plasma Cr)/(Plasma Sodium x Urine Cr)
 - > <1% = PreRenal
 - > >2% = Intrinsic Renal
 - > >4% = Post-renal (obstructive)

Feurea (on diuretics)

- O (Uríne urea x Plasma Cr)/(Plasma Urea x Uríne Cr)
 - > <35% = prerenal
 - > >35% = intrinsic renal



Source: D. L. Kasper, A. S. Fauci, S. L. Hauser, D. L. Longo, J. L. Jameson, J. Loscalzo: Harrison's Principles of Internal Medicine, 19th Edition. www.accessmedicine.com
Copyright © McGraw-Hill Education. All rights reserved.

1 Digress... CardioRenal Syndrome

- O Heart failure can worsen renal function by several mechanisms:
 - 1. Reduced forward blood flow \rightarrow decreased renal perfusion \rightarrow prerenal azotemía
 - 2. Renal vein congestion causing increased pressure and reduced GFR
- ◆ Treatment: optimize cardiac function + diuresis
- O **ALWAYS ASSESS VOLUME STATUS**

AKI Management!

Prerenal

- O Dehydration → fluids!
- O Cardiorenal syndrome → diuresis!

Intrínsic Renal (ATN, AIN)

- O Maintain euvolemia
- O Maintain blood pressure and MAP
- O Withdraw potential offending agents

Postrenal

- O Relieve the obstruction!
- O Foley catheter
- Ureteral stenting (if unilateral), percutaneous nephrostomy

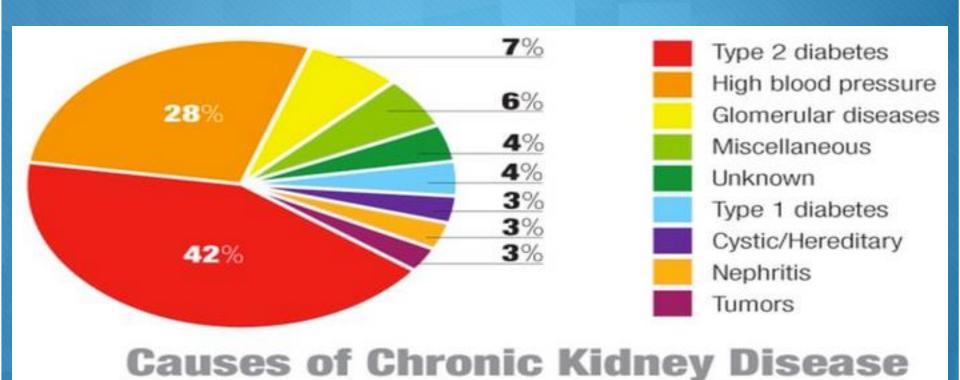

Stages of CKD

Table 1. Definition of CKD Stages Based on GFR*

CKD Stage	Definition
1	Kidney damage with GFR ≥90 mL/min/1.73 m ²
2	Kidney damage with GFR of 60-89 mL/min/1.73 m ²
3	GFR of 30-59 mL/min/1.73 m ²
4	GFR of 15-29 mL/min/1.73 m ²
5	GFR <15 mL/min/1.73 m ² , or kidney failure treated by dialysis or transplantation

CKD = chronic kidney disease; GFR = glomerular filtration rate.

^{*} Adapted from reference 3. The Kidney Disease: Improving Global Outcomes Work Group recently updated its definition of CKD progression to include consideration of both GFR and albuminuria stages (2).

Complications of CKD

- O Hyperparathyroidism († Phos, JCa, Jcalcitriol)
- O Hyperkalemía
- O Ischemic Vascular Disease
- O Anemía
- o calciphylaxis
- O Heart Failure, LVH, HTN

Source: Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J: Harrison's Principles of Internal Medicine, 18th Edition: www.accessmedicine.com Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Nephritic...Nephrotic

- O Nephritic
 - O Blood >> Protein
 - O 1-2g/day, pyuría, hematuría w/ casts, HTN, fluíd retention
 - O Anti-GBM, Churg-Strauss, Wegener's, Microscopic Polyangitis, IgA Nephropathy, Post Strep GN, MPGN
- O Nephrotic
 - O Protein >> Blood
 - O 3.5g/day (definition) for 'nephrotic range' proteinuria
 - O MCD, FSGS, Membranous, Membranoproliferative, DM, Amyloid

Indications for Dialysis

- O A ACIDOSIS
- O E-ELECTROLYTES (K, P, Mg, Ca, Na)
- 0 1-INGESTION/TOXINS
- O O OVERLOAD (not responding to diuretics)
- Ο U- UREMIA (pericarditis/encephalopathy)

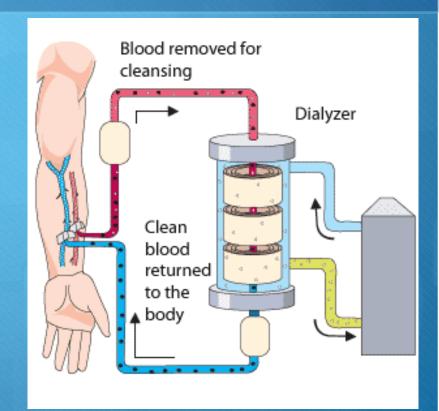
What is Dialysis?

- O Diffusion of solutes proceeds down a concentration gradient from blood to dialysate or vice versa
- O Blood and dialysate flow in opposite directions through the dialyzer
- O Fluid removal occurs via hydrostatic pressure gradient

O ***UF=Ultrafiltration - fluid removal only

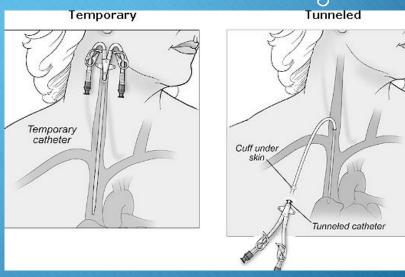
Types of Dialysis

Continuous Renal Replacement Therapy/CVVH


- O Slow removal of fluid/toxins
- O Low pressure system
- o ICU setting

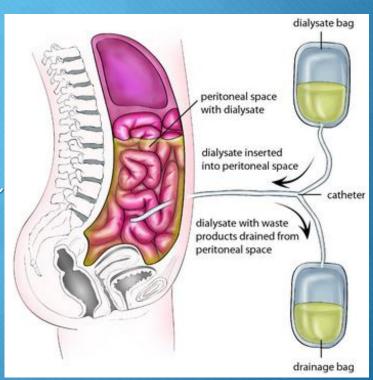
Types of Dialysis

Intermittent Hemodialysis


- 0 3-4x/week for 2-4hrs
- O Outpatient (Dialysis Center)

Vascular Access				
	Advantages	Disadvantages		
AV Fistula	Highest patency Lowest risk of bacteremia	Long maturation time (2–6 mo) Primary nonfunction (20%)		
AV Graft	Easier to create than AVF Maturation time (2–3 wks)	Poor 1° patency, often requiring thrombectomy or angioplasty		
Catheter	Immediate use Use as bridge to AVF/AVG	Highest risk of bacteremia \downarrow blood flow \rightarrow \downarrow HD efficiency		

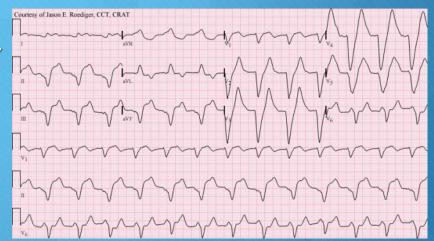
*Tunneled Catheter is done by IR *AVF and AVG are done by vascular surgeon, not available to use immediately



Types of Dialysis

Peritoneal Dialysis

- O Daily or Continuous
- O Outpatient (home)
- O Dialysis solution instilled into abdomen through catheter and allowed to dwell
- O Perítoneal membrane acts as "filter"; solutes díffuse across thís. Then used fluíd ís draíned


Complications of HD

- → Hypotension
 - Recheck, May need fluid back, Infection
- → Hypertension
 - ◆ May need med change...
- ◆ Arrhythmía
 - ◆ Get ECG, check electrolytes

- → Bleeding
 - → Hold pressure, check CBC, hemolytic panel
- → Infection
 - → Blood cultures (peripheral and HD site)

Complications of HD

- → Hyperkalemía
 - ✓ Kayexelate, Insulín/D50, Lasíx, Calcíum Gluconate
- ◆ volume overload
 - ✓ UF
- ◆ Access issues
 - ✓ Stenosís
 - ✓ Thrombus
 - ✓ Pseudoaneurysms

← Fístulogram, IR, Vasc Surg

When on Eckel...

O Etiology of ESRD

- O Dry Weight
- O Route of dialysis (HD or PD)
 - O Review labs closely
- O Location and days of HD (last O Review medications and make day of HD)
 - sure renally-dosed

- O Anatomical Access
- O Nephrologist